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Fig. 7. Gain of Mixer no. 2 (AT8060 FET). The LO level for optimum noise
figure is O dBm; optimum third-order intermodulation is + 6 dBm. V& = 3.0
v, V*= –1.0 v.
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Fig. 8. Nome figure of Mixer no. 2 at the LO level for optimum noise (O

dBm) and optimum intermodufation (+6 dBm). DC bms for both cases is
Vd, = 3.0 V, Vw = –1.0 V.
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Fig. 9. Third-order intermodufation intercept point of rmxer no. 2, as a
function of LO level. DC bias is the same as that used for noise figure data.

and – 1.0 V, respectively. As with the first mixer, the gate is
biased close to pinchoff.

It is worthwhile to compare these results to the performance of
diode mixers. Commercially available balanced diode mixers used
most often in the microwave range exhibit conversion losses of
5–9 dB, third-order intercept points (output) of 0–13 dBm, and
have LO power requirements of 8–18 dBm. It is possible in some
cases to achieve mixer noise figures as low as 3.5 dB by narrow-
band design and image enhancement, and receiver noise figures
around 5 dB. Such mixers require considerable effort to design
and optimize, and will almost certainly be single-ended structures
with relatively poor intermodulation performance. Mr.dtidiode
balanced mixers offer better intermodulation performance, ap-
proaching that of FET mixers, at the expense of high LO power
requirements. However, most balanced structures cannot be tuned
and optimized as effectively as single diode mixers, so their noise
performance is usually worse. The FET mixer offers lower noise

and equal or better linearity with less LO power. It can be
incorporated into balanced structures for even lower intermodu-
Iation without sacrificing noise performance or creating a terrify-
ing design problem.

V. CONCLUSIONS

A very general theory of active mixers has been presented, with

application to GRAS FET mixers. The theory has been validated
experimentally,
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Microwave Hyperthermic Distributions in a Layered

Lhing Body with Nonlinear Thermoregtdatory

Properties

S.CAORSI

Abstract —In this paper, the microwave heating of biological systems

with nonlinear thermoregulatory properties is considered. Temperature

distributions are calculated in a layered biological model exposed to

uniform plane waves. The extemaf surfaces of such a model are cooled and

its thermoregulatory properties are assumed to be nonfinear functions of

the local temperature. The cafcutation of the space-time evolution of the

temperature is performed using a numerical program that has been devel-

oped by applying the finite-difference method. In this numericaf program,

the nonlinear thermoregulatory functions are given either by a segment-lin-

earization process or by an arbitrary analytical form or by a transformation

of an input sample set. The mean power density of the incident electromag-

netic wave and the coolant temperature are also taken time-dependent.
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I. INTRODUCTION

As is well known, microwave hyperthermia in oncological

therapy is based on the heating of cancerous tissues to keep them
intherangeof41 to45° Cforagiven period oftime[l], [2].

During electromagnetic heating, the temperature distribution is

not only dependent on the distribution of electromagnetic ab-
sorption, but also on the mechanism of heat generation and
transfer, as well. as on the initial and boundary conditions.
Consequently, it is necessary to simulate mathematically, as
accurately as possible, both the physical characteristics of the
living body and the complex thermrd processes taking place
inside it.

The available theoretical contributions to the resolution of the
above problem are based on simplified geometries of biological
tissues and on the mathematical models that have been developed
starting from the well-known equation of transient heat conduc-
tion [3].

Such models are characterized by internal heat generation and

dissipation, which are generally considered as independent or
linear functions of the local temperature [4]–[6]. The linear theo-
retical model was improved by assuming the mean power density
of the incident plane wave and the coolant temperature to be
time-dependent [7], [8].

Nevertheless, the linear approach seems to be insufficient to

describe the complex thermal phenomena that characterize a
living body [9], [10].

In this paper, to obtain the best possible approximation of the

actual behavior of a biological system, we develop, in accordance
with previous results [11] -[13], a mathematical model of heat
conduction where the thermal processes related to metabolism
and the blood flow are assumed to be nonlinem functions of the
locrd temperature.

The biological system is represented by a set of plane layers
with physical characteristics (e.g., complex dielectric permittivity,
density, specific heat, etc.) that can be deduced from biblio-

graphic references [2], [14], [15].
Such a biological system is irradiated by a plane wave, while

the mean power density of the incident field and the coolant
temperature are assumed to be time-dependent functions.

The calculation of the temporal evolution of the temperature
distribution can be performed by a numerical program that we
developed in accord with the finite-difference method.

II. MATHEMATICAL MODEL

We assume that a biological system can be simulated by a

series of homogeneous plane layers, and that each layer is char-
acterized by constant values of its complex dielectric permittivity,
specific heat, and density. Moreover, the thermoregulatory prop-
erties of the living body are represented, as a ‘first approximation,
by the control of the metabolic heat production and by the
control of the heat loss through the exchange with the cardiovasc-
ular system (i.e., variations in the blood flow) and with the
environment surrounding the external surface of the body.

The biological system is exposed to uniform plane waves that
normally impinge on its external surface; a coolant contacts its
outer surface where the electromagnetic field is incident.

Under these conditions, the heat-conduction equation for each
layer can be written as follows:

(1)

where

Un(x, t) represents the time-space evolution of the tempera-
ture in the n th layer,

Cn,gn,kn are the specific heat, density, and thermal conductiv-
ity, respectively,

Q: represents the combined effect of the metabolic heat
production and of the heat loss through the blood
flow,

Q;m represents heat production due to absorption of elec-
tromagnetic energy.

Under the assumption of plane waves normally impinging on
the layered system, the heat production Q;% in each layer can be
written as follows:

Q:~(x)=POWn(x)/J (2)

Wn(x)=@nlEn(x)[2 (3)

where E.(x) is the electric-field distribution in the n th layer, PO
is the mean power density of the incident plane wave, on is the
electric conductivity of the n th layer, and J is the mechanical
equivalent of heat.

The electric-field distribution in each layer can easily be ob-
tained by use of a transmission-line analogy, Then, in the n th
layer

En(x)/Eo = T. (e-~y”(’-x”) + pne+Jy”(x-x”)) (4)

where EO is the amplitude of the incident field, y. is the complex
propagation constant, y.= tom, c. is the complex dielectric
permittivity, Xn is the coordinate of the interface between the
n th layer and the (n +1) one, x. = ~= 111,1,is the layer length,

Pn is the reflection coefficient at the ‘n Plme

.
,g t,

T.=

()
exp j ~ y,ll

1=1

and

l+pi-~t,=
1+ pieXp(–2jyjlZ) “

(5)

(6)

The reflection coefficient pn is obtained by applying succes-
sively the impedance transformation along all the layers included
between the n th layer and the last boundary plane (n+ 1, n +
2,... , N). The reflection coefficient of the incident wave at x = O
(i.e., PO) is obtained in the same way, that is, by extending the
transformation process to the first layer.

The system’s nonlinearity is represented by the thermoregula-
tory effects Q: which are assumed to be nonlinear functions of
the locrd temperature and are different in each layer, to better
approximate the actual behaviors of the various biological tissues
(fat, bone, muscle, liver, etc.).

In general, we can write

Q:(r.I) =A:(u)u(x, t)+ B:(u). (7)

This relation includes both the metabolic effect Q; and the
blood-flow effect Q:! that is

Q:= Q:+ Q;f. (8)

If coefficients A; and B: are constant quantities, the behavior
of the n th layer of the biological system is linear. In this case, we
can consider, for example, a constant metabolic heat production
and a linear heat exchange with the blood flow [5], [7], [11]

Q:f=-Bn(z)(x, t)-ubn) (9)
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where B. is the product of the flow and heat capacity of the
blood, and Ubn is the temperature of the arterial blood entering
the tissue.

To complete the problem statement, it is necessary to specify
the boundary conditions at the interface between the various
layers, as well as the conditions on the external surfaces. In the
first case, the heat flow and the temperature must be continuous

:x .+ I(XN) IX,kn:Un(X, t) ,,=k.+l —u (lo)

uJl(-zJ~)=%+l(%}~) (11)

xzGIn, n+~

where In ~● ~ represents the interface between the n th layer and

the n + 1 one. In the second case, we use the typical Cauchy
condition [16]

~ ~.(x, t)ll, =–p, (u. (x,, t)–ue, (t)) (12)

where x. represents the coordinate of the bounda~ plane surfaces
(x. = O,n =1, and x, =1, n = N; 1: total length of the layered
system); d/6’ n stands for the outgoing normal derivative; and
ue, can be both the temperature of the environment surrounding
the boundary surface and the temperature of the cooling medium.

Finally, we assume that, in the layered biological system, there
is an initiaf temperature distribution v,(x) when the electromag-
netic heating and/or the surface cooling begin.

According to the present approach, v,(x) can be chosen arbi-
trarily; nevertheless, it maybe suitable, without loss of generality,
to describe v,(x) as the steady-state solution in the case without
electromagnetic heating and/or cooling.

In this paper, the transient temperature distribution in the
layered biological system is obtained by applying the well-known
method of finite differences [16], [17], According to this method,
the system’s nonlinearity can be taken into account in the state-
ment, both explicit and implicit, of the finite-difference equa-
tions. In the explicit statement, the Eulero form has been used,
whereas in the implicit one, both the so-called “backward dif-
ference formula” and the Crank-Nicolson method [17] have been
employed.

In the first case in each layer, the temperature is calculated
point-by-point within the validity constraint At/(Ax)z <

c,,gn/2 kn. In the second case, instead, because the value of Q~’
is required just at the time step in which the temperature is
unknown, it is necessary to perform a projection; at each time
step, the temperature distribution (i.e., the temperature at the
chosen points) is obtained by solving a system of algebraic
equations that, fortunately, is in an easy tndiagonal form [17]. In
this case, the choice of the time step At is independent of the
space step Ax, so that a reduction in computation time can be
obtained. Nevertheless, a limitation to the value of At must be
taken into account, depending on the projection that has been
chosen.

In both cases, it may be suitable, even if not necesswy, to
perform a segment-linearization of the Q: functions, thus point-
ing out various threshold temperatures that diversify the thermo-
regulatory behavior of each layer into linear ranges. In general,
however, the numerical program we have developed allows us to

represent Q: in an arbitrary analytical form or by a set of input
samples (experimental measurements, simulations, graphs, etc.)
that are transformed into both a step function series and a
reconstructed analytical form.

Moreover, the application of the finite-difference method al-
lows us to take into account, in a simple way, slow time-depen-
dent variations both in the mean power density of the incident
field and in the coolant temperature; changes in such quantities
can, in fact, be obtained at any time step.

e m. plane

waves

-FPe(mW ~z)

velrC)

I

fat muscle bone

re2=28-C

I I I 1 x=

J ;cm -
i i

Fig. 1. Three-layered biological model.

III. NUMERICAL EXAMPLESAND DISCUSSION

A first example of application is represented by the case of a
three-layered biological model consisting of fat, muscle, and
bone, as shown in Fig. 1.

Uniform plane waves at a mean power density PO(mW/cmz )
impinge on the plane x = Oin the normrd direction, at a frequency
of 2450 MHz. At this frequency, we have chosen the following
values of the dielectric constant c and electric conductivity u for
the various tissues [2]:

E~z= 47(., c, = (~ = 5.5c~
(13)

Om= 2.21 mho/m, Uf = ~~= .155 mho/m

where the subscripts m, f, b stand for muscle, fat, and bone,
respectively, and COis the dielectric constant of free space.

Moreover, we have assumed that the temperature of the
environment surrounding the layered model is ue = 28 ‘C, and
that the surface x = O is cooled when the electromagnetic field is
applied. Then, we have

vel = vez = 28 “C, 2<()
(14)

vez = 28 ‘C, vel < vez, t>o.

In accordance with other papers (see, for example, [2], [4], [10]),
we have chosen the following values of the thermal and physical

parameters, which have been assumed to be constant:

c~g~ = 0.8025 cal/cm3 “C, km= 0.0012 cal/cms

c, gf = 0.6025 cal/cm3 ‘C, k,= 0.00055 cal/cms (15)

c~g~= 0.8568 cal/cm3 “C, k~ = 0.0035 cal/cms

and

&lx=o =PJIX=l = 0.25 cm-’. (16)

In relation (16), for simplicity, the coefficients of the heat
exchange with the external medium through the planes x = O and
x = 1 have been assumed to be equal. However, the present
problem statement and the numerical program we have devel-
oped allow us to consider different values of such coefficients,
depending on the nature of the contact media and on their
relative velocity [8].

Finally, the assumed nonlinear thermoregulatory behavior of
the various tissues is presented in Figs. 2 and 3; as can be seen
from these figures, some different examples of nonlinear func-
tions for the muscle layer have also been considered.

Fig. 4 shows the transient temperature distribution in the case
of curve b in Fig. 2, and for some values of the mean power
density of the incident field (P. = 100 mW/cm2 and P.= 80
mW/cm2 ) and of the coolant temperature ( vel = 17 “C and
vel =10 ‘C).
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Fig. 6. Five-layered biological model.

The initial distribtttion Ui(x) has been calculated via the same
numerical program, but with PO= Oand vel = 280 C (i.e., without
electromagnetic heating and surface cooling).

In this figure, the curves labelled 30’ and 60’ represent the
temperature distributions after 30 and 60 min of electromagnetic
heating, respectively, while the curves labelled VF represent the
final distributions, i.e., those which differ ‘in norm from the
distribution of the previous time step by an arbitrary small
reference quantity.

Fig. 5 illustrates the dependence of the final distribution on the
thermoregulatory behavior of the muscle” layer; this figure, in

fact, shows +e VF curves obtained from the various Q“ func-

tions presented in Fig. 2, with P.= 80 mW/cm2 and vel = 17 “C.
Another example of application is represented by the perhaps

more realistic case of a five-layered biological model, as shown in

Fig. 6.

The transient temperature distribution given in Fig. 7 has been

obtained under the same conditions as in the previous case, and

the final configuration corresponding to the various thermoregu-

latory behaviors of the muscle layers are presented in Fig. 8.
The &mlysis of the above examples points out that the type of

nonlinearity assumed causes the nonlinear therrnoregulatory

properties to lower the temperature distributions (see Figs. 5 and

8). Moreover, the smoother therrnoregttltory behavior of fat raises
the temperature in the fat layer, while the slight rise in the
temperature of the bone layer is due to the low electromagnetic
absorption in this tissue.
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cal model for the caae of curve b in Fig. 2.
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Fig. 8. Finaf temperature distributions Z,Fin the fwe-layered biological model
for some Q“ functrons of the muscle layer as shown in Fig. 2 (linear b and
c, respectively).

Figs. 4 and 7 also illustrate the different effects of the mean
power density of the incident field, and of the coolant tempera-
ture.

A decrease in the coolant temperature produces a decrease in
the temperature of the extemaf surface, but not in the deep layers
(for example, in the bone layer in Fig. 4). On the contrary, a
variation in the temperature of the whole layered biological
model is produced by a variation in the mean power density of
the incident field, clearly as a function of the microwave power
penetration and of the nonlinear thermaf properties.

Fig. 10. Trarment temperature distribution U(X, t) in the three-layered bio-
logical model for the time-dependent and nonlinear case; time variations m
PO and Uel are given in Fig. 9, while the nonfinear thermoregulatory behav-
ior Q“ of the muscle layer is grven by curve b m Fig. 2.

Finally, an example of a time-dependent and nonlinear case is
given by the three-layered biological model previously used (Fig.
1). Its dielectric and thermal properties have been chosen as in
(13), (15), and (16), while curve b in Fig. 2 has been used as a
nonlinear thermoregulatory function for the muscle layer.

Under the assumption of variations in the mean power density
F’. of the incident field and in the coolant temperature vel, as
given in Fig. 9, we obtain the temporal evolution of the tempera-
ture distribution in the three-layered model, as shown in Fig. 10.

As can be seen from this figure, there is a fast initial increase in
the temperature, corresponding to the initial increase in l’. but
balanced by the decrease in the coolant temperature. Subse-
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quently, the temperature reaches its maximum wdue, and then
&e temperature distribution converges to its final configuration
u~.
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Abstract —A recently developed, rapidly converging moment solution for

electromagnetic scattering by a single inductive post in a rectangular

wavegtride is extended to include the current induced on the past surface.
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The results are represented by a Fourier series and the first few terms are

compared with available data. ‘he excellent agreement demonstrates that

this approach can yield an accurate solution. This rather simple procedure

is even more attractive when other wavegnide obstacles such as thick ieises

and posts of arbitrary shape, which require, in generat, more thau just a few

Fourier terms for their current representation, are encountered.

I. INTRODUCTION

In a recent paper [1], Leviatan et al. have formulated the
problem of a single inductive post in a rectangular waveguide in
terms of an equivalent current, represented by a set of unknown
current filaments placed either on or inside the post surface.
Further, they applied a multiple point matching of the boundary
condition on the post surface and solved for the unknown fila-
mentary currents via the method of moments. These currents
have then been employed ‘to derive the scattering matrix and the
equivalent T-network parameters for the post junction. The com-
puted results showed good agreement with Marcuvitz’s data [2] as
far as this data goes, and demonstrated the feasibility of using
this rather simple moment approach in solving the single-post as
well as a variety of microwave discontinuities.

Although this paper [1] addresses many aspects of the single-
post problem, its scope has been confined to the calculation of
the equivalent T-network for the post two-port junction. Little
attention has been paid to the current induced on the post
surface. Knowledge of the surface induced current is not solely of
academic interest, but of practical importance as well. For exam-
ple, this current can be used in a perturbational solution to
approximate the power dissipated in an imperfectly conducting
post surface.

The main objective of this paper is to show that the simple
multifilamentary representation for the equivalent current can
accurately predict the actually induced current. The circular post
is an attractive case study because pertairdng results can be
readily checked against results available, although not explicitly,
in [3], where the first few terms of the Fourier series representa-
tion for the current have been employed in a Galerkin procedure.

A successful use of the multifilamentary representation in calcu-
lating the post current would then enable simple current calcula-
tions for other waveguide obstacles such as thick irises and posts
of arbitrary shape that require, in general, more than just a few
Fourier terms for their current representation.

II. FORMULATION OF THE PROBLEM

The physical configuration of the problem under study is

shown in Fig. 1, together with tie coordinate system used.

Following the procedure suggested in [1], we replace the post by

N y-directed current filaments 1,, i =1,2,..., N equally spaced
on a circular surface S, taken to be either the same as the post
surface SOor concentric and inside SOas shown in Fig, 2. These
filaments function as an approximate equivalent current and, as
such, generate a field ‘which is approximately the field scattered
by the post itself on and external to SO.

The surface current induced on the circular post can be readily
derived from the incident and scattered magnetic fields H ‘n” and

H ‘=*, as follows I

.l, =it X( Hi*’ +H’Cat) (1)

where ii is a unit vector normal to the post surface. As shown in
Fig. 1, it is pointing towards the waveguide region. Using the
coordinate system depicted in Fig. 1, h is expressed as

k=–uXCOS@+uZsin~. (2)
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